

Chapter 2.3

Resistive Circuits
Kirchhoff's Law

Engr228-Circuit Analysis
Spring 2020

Dr Curtis Nelson

Section 2.3 Objective

- Learn to apply Kirchhoff's laws.

Resistor Color Code Chart

Ohm's Law

- The relationship between voltage, current, and resistance is defined by Ohm's law which states that

$$
V=I R
$$

where
$\mathrm{V}=$ the voltage in volts;
$\mathrm{I}=$ the current in amps;
$\mathrm{R}=$ the resistance in ohms.

Ohm's Law Illustrated

Series Connections

- Elements connected head-to-tail and carrying the same current are said to be connected in series.

Parallel Connections

- Elements in a circuit connected head-to-head and tail-to-tail have a common voltage across them and are said to be connected in parallel.

Nodes, Paths, Loops, Branches

- These two circuits are equivalent.
- There are three nodes and five branches:
- Node: a point at which two or more elements have a common connection;
- Path: a sequence of nodes;
- Branch: a single path in a circuit composed of one simple element and the node at each end of that element;
- Loop: a closed path.

Kirchhoff's Current Law

- Kirchhoff's Current Law (KCL) states that the algebraic sum of all currents entering a node is zero.

$$
i_{A}+i_{B}+\left(-i_{C}\right)+\left(-i_{D}\right)=0
$$

KCL: Alternative Forms

- Current $I N$ is positive:

$$
i_{A}+i_{B}+\left(-i_{C}\right)+\left(-i_{D}\right)=0
$$

- Current $O U T$ is positive:

$$
\left(-i_{A}\right)+\left(-i_{B}\right)+i_{C}+i_{D}=0
$$

- Current $I N=$ Current OUT:

$$
i_{A}+i_{B}=i_{C}+i_{D}
$$

KCL Application

Find the current through resistor R_{3} if it is known that the voltage source supplies a current of 3 A .

Answer: $i=6 \mathrm{~A}$

Kirchhoff's Voltage Law

- Kirchhoff's Voltage Law (KVL) states that the algebraic sum of the voltages around any closed path is zero.

$$
-v_{1}+v_{2}+-v_{3}=0
$$

KVL: Alternative Forms

- Sum of RISES is zero (clockwise from B):

$$
v_{1}+\left(-v_{2}\right)+v_{3}=0
$$

- Sum of DROPS is zero (clockwise from B):

$$
\left(-v_{1}\right)+v_{2}+\left(-v_{3}\right)=0
$$

- Sum of RISES is equal to sum of DROPS (clockwise from B):

$$
v_{1}+v_{2}=v_{3}
$$

KVL Application

Find the current i_{x} and the voltage v_{x}

Answer: $v_{x}=12 V$ and $i_{x}=120 \mathrm{~mA}$

Circuit Analysis with Dependent Sources

- Circuits that contain dependent sources can be analyzed using Ohm's and Kirchhoff's laws.
- A dependent source generally adds another equation to the solution process.

Textbook Problem 2.22 (Nilsson 10E)

The current i_{0} is 1 A .
A) Find i_{1}.
B) Find the power dissipated in each resistor.
C) Verify that the power developed = power absorbed.

A) $i_{1}=2 \mathrm{~A}$
B) $P_{4}=100 \mathrm{~W} \quad P_{50}=50 \mathrm{~W} \quad P_{10}=90 \mathrm{~W} \quad P_{65}=260 \mathrm{~W} \quad P_{25}=400 \mathrm{~W}$
C) $P_{150 \mathrm{~V}}=900 \mathrm{~W}=$ sum of powers dissipated in the 5 resistors.

Zybook Exercise 2.3.13

Exercise 2.3.13

(a) Given that in the circuit above, $I_{1}=4 \mathrm{~A}, I_{2}=1 \mathrm{~A}$, and $I_{3}=1 \mathrm{~A}$, determine node voltages V_{1}, V_{2}, and V_{3}.

Measuring Voltage and Current

- An ammeter is an instrument designed to measure current; it is placed in series with the circuit element whose current is being measured.
- A voltmeter is an instrument designed to measure voltage; it is placed in parallel with the element whose voltage is being measured.

Measuring Resistance

- An ohmmeter is an instrument designed to measure resistance; it is placed in parallel with the resistive circuit whose resistance is being measured. Note that accurate measurements of resistance require that the resistive circuit have no energy present (no voltage or current).
- Often, one instrument - called a multimeter - is used to measure all three parameters, but not all at once.

Fluke Multimeters

Measuring Voltage, Current, and Resistance

- An ideal meter has no effect on the circuit variable being measured.
- That means when an ideal ammeter is placed in series to measure the current through an element, it should have an equivalent resistance of 0Ω.
- That means when an ideal voltmeter is placed in parallel to measure the voltage across an element, it should have an equivalent resistance of $\infty \Omega$.

Textbook Problem 3.39 (Nilsson $11^{\text {th }}$)

An ammeter with an internal resistance of 0.1Ω is used in the circuit below. Find the percentage error in the measured value using the following formula:
$\%$ Error $=[($ Measured value - True value $) /$ True value $] * 100 \%$

Answer: $\%$ error $=-0.347 \%$

Section 2.3 Summary

- Section 2.3: You learned to apply Kirchhoff's laws.

